読者です 読者をやめる 読者になる 読者になる

続・そろそろPower Assertについてひとこと言っておくか

F# Test

3年前にこんな記事をあげました。

bleis-tift.hatenablog.com

3行でまとめると、

  • Power Assertはユニットテストのためにほしかったものではない
  • 欲しいのは結果の差分
  • 誰か作って!

というエントリでした。 そしたら id:pocketberserker が作ってくれました!

github.com

PowerAssertより強そうな名前でいい感じです。

MuscleAssertの使い方

このライブラリは、PersimmonというF#用のテスティングフレームワークを拡張するライブラリとして作られています。 ただ、ざっくり概要をつかむだけであればどちらも知らなくても問題ありません。 このライブラリでできることはほぼ1つだけです。

open Persimmon
open Persimmon.Syntax.UseTestNameByReflection
open Persimmon.MuscleAssert

let add x y = x + y

let ``add 2 35を返す`` () = test {
  do! add 2 3 === 5
}

以上。簡単。 これを実行しても成功してしまって面白みがないので、わざと間違ってみましょう。

open Persimmon
open Persimmon.Syntax.UseTestNameByReflection
open Persimmon.MuscleAssert

let add x y = x + x // ミス!

let ``add 2 35を返す`` () = test {
  do! add 2 3 === 5
}

これをPersimmon.Consoleで実行すると、

 Assertion Violated: add 2 3が5を返す
 1. .
      left  4
      right 5

こんなエラーが出てきました。 普通ですね。

では、例えばこんなJSONがあったとしましょう。

{"widget": {
    "debug": "on",
    "window": {
        "title": "Sample Konfabulator Widget",
        "name": "main_window",
        "width": 500,
        "height": 500
    },
    "image": { 
        "src": "Images/Sun.png",
        "name": "sun1",
        "hOffset": 250,
        "vOffset": 250,
        "alignment": "center"
    },
    "text": {
        "data": "Click Here",
        "size": 36,
        "style": "bold",
        "name": "text1",
        "hOffset": 250,
        "vOffset": 100,
        "alignment": "center",
        "onMouseUp": "sun1.opacity = (sun1.opacity / 100) * 90;"
    }
}}

これを読み込む関数を定義したとして、その関数をテストしたいですよね。

let expected =

let ``JSONが読み込める`` () = test {
  do! read json === expected
}

read 関数の実装にミスがあり、textvOffsethOffset の値を使ってしまったとしましょう。 このテストを実行すると、下記のようなエラーメッセージが表示されます。

 Assertion Violated: JSONが読み込める
 1. .text.vOffset
      left  250
      right 100

textvOffset の値が左は 250 だったけど、右は 100 だった、ということが一目瞭然です。

MuscleAssert VS PowerAssert

MuscleAssertとPowerAssertの目的ははっきりと分かれています。 MuscleAssertが最初からテスティングフレームワークアサーションを書くために特化しているのに対して、PowerAssertは(テストではなく)表明に使うことを前提にデザインされています。

表明手段

表明手段としてのPowerAssertはとても便利です。 言語内蔵の assert は、条件式が false の場合に何やらメッセージを出しますが、「どこで表明が false と評価された」くらいの情報しか持っていません。 メッセージをカスタマイズすることはできますが、文字列で指定する必要があるため「どうなったか」を埋め込むのは大変です。

PowerAssertは、言語内蔵の assert をそのままに表示されるメッセージをリッチにしてくれます。 表明として埋め込んだ式の「部分式の値」がメッセージとして表示されるため、「どの式の評価値が想定と違うのか」を調べるための情報をコーディングのコストを払わずに得られるようになるのです。

対してMuscleAssertはそもそも、Persimmon.MuscleAssertはPersimmon用のライブラリとして作られているため、Persimmonに依存しており単体で使えるものではありません。 表明に使えたとしても、MuscleAssertは式全体の評価結果の差分を出すため、ほしい情報である「どの式の評価値が想定と違うのか」を調べるための情報はそこに乗っていないでしょう。

表明手段としては、PowerAssertの圧勝です。

ユニットテストアサーション

しかし、MuscleAssertがやりたかったのは表明ではありません。 ユニットテストアサーションとして使いたかったのです。

MuscleAssertが例えばJSONのようなネストした構造に対するテストに強そうだ、というのは先ほど紹介した例で分かると思います。 XMLJSONYAMLは当然として、そもそもクラス自体が何かを内部に持っているネスト構造をしているため、ネストした構造をそのまま比較してもわかりやすいメッセージが出力されるMuscleAssertは便利です。

対してPowerAssertはこの例には貧弱です。

let ``JSONが読み込める`` () = test {
  do! read json === expected
}

このテストが失敗するとして、PowerAssertで表示されるのは

  • json 変数の中身
  • read json の結果
  • expected の中身
  • read json === expectedfalse になったということ

ですかね。 どれもドバドバと大量の出力をするわりに、本当に欲しい「どこがどう違うのか?」という情報はそこから得るのは容易ではありません。 diffツールを使って外部でdiffとるとかしたことある人も多いんじゃないでしょうか?

そもそも、テストで actual 側に部分式が出てうれしいほど何かを書くことって多いのか?というのも疑問です。 このテストのように、多くのテストでは期待値との一点比較ができればいいのではないでしょうか?

ちなみに、MuscleAssertでは一度に複数の箇所の間違いを出してくれますので、小さいテストをまとめるのも容易です。

1. .image.hOffset
      left  500
      right 250
    .image.vOffset
      left  500
      right 250
    .text.vOffset
      left  250
      right 100
    .text.alignment
      left  centre
      right center

    @@ -1,6 +1,6 @@
     cent
    -re
    +er

MuscleAssertの弱点

MuscleAssertの弱点は、一点比較しかできないところです。 そのため、浮動小数点数を含むデータ構造を、浮動小数点数の一致範囲を指定して比較、ということは現状ではできません。 また、大小比較などもサポートしていません。

現状でこれらをテストしたい場合は、MuscleAssertを使わずにテストするしかありません。 今のところ、これで困ったことはありません(そういうテストが必要なドメインで仕事をしていない)。

まとめ

まとめも3行で。

  • MuscleAssert便利
  • テストのためのアサーションライブラリとしてはPowerAssertよりも便利
  • 弱点はある。でも自分が困っていないから放置

みなさんも自分が使っている言語でMuscleAssertを実装してみてはいかがでしょう?便利ですよ。

F#でWPFやるときのTipsとか(その2)

F# WPF

F#でWPFやるときのTipsとか(その1)の続編です。

添付プロパティの作り方

F#で添付プロパティを作るには、添付プロパティの本体はプロパティではなくフィールドに保持する必要があるようです。

// ダメな例
type Sample private () =
  static member SomeValueProperty =
    DependencyProperty.RegisterAttached("SomeValue", typeof<string>, typeof<Sample>, FrameworkPropertyMetaData("", Sample.OnSomeValueChanged))

  static member GetSomeValue(obj: DependencyObject) = obj.GetValue(Sample.SomeValueProperty) :?> string
  static member SetSomeValue(obj: DependencyObject, value: string) = obj.SetValue(Sample.SomeValueProperty, value)

  static member OnSomeValueChanged =
    PropertyChangedCallback(fun sender e ->
      // プロパティが変更されたときの処理
    )

このコードはコンパイルは通りますが、この添付プロパティにXAML内でBindingしようとすると、

'Button' コレクション内で 'Binding' を使用することはできません。'Binding' は、DependencyObject の DependencyProperty でのみ設定できます。

というエラーになってしまいます。

プロパティではなくフィールドを使うとうまくいきます。

type Sample private () =
  // 一旦staticなフィールドに保持しておいて、
  static let someValueProperty =
    DependencyProperty.RegisterAttached("SomeValue", typeof<string>, typeof<Sample>, FrameworkPropertyMetaData("", Sample.OnSomeValueChanged))

  // プロパティの値として保持したフィールドを設定
  static member SomeValueProperty = someValueProperty

  static member GetSomeValue(obj: DependencyObject) = obj.GetValue(Sample.SomeValueProperty) :?> string
  static member SetSomeValue(obj: DependencyObject, value: string) = obj.SetValue(Sample.SomeValueProperty, value)

  static member OnSomeValueChanged =
    PropertyChangedCallback(fun sender e ->
      // プロパティが変更されたときの処理
    )

添付プロパティがF#で書けるため、WPFのかなりの部分がF#のみで完結できると思われます。 Full F#でWPFがかなり現実味を帯びてきました。 足りないのは各種ユーティリティなので、その辺の再実装が苦でない人であれば、十分選択肢に入ってくる環境はすでに整ったと言えるでしょう。

別Windowの開き方

今のところ、一番手軽に別Windowを開くには、XAML Type Providerを使うのがいいでしょう。

まずはXAMLを作る必要がありますが、F#のプロジェクトではXAMLのアイテムテンプレートがないため、「General」の「XMLファイル」を選んでファイルの拡張子をxamlに変更します。 注意点として、この方法で追加したファイルは「ビルドアクション」が「None」になっているので、「Resource」に変更しておく必要があります。

「F# Empty Windows App (WPF)」テンプレートでプロジェクトを作った場合、

type OtherView = XAML<"OtherWindow.xaml">

としてViewを表す型を作っておいて、何らかのコマンド内でこの型のオブジェクトを生成して Show (もしくは ShowDialog)を呼び出します。

member this.OnClick = this.Factory.CommandSync (fun () ->
  let view = OtherView()
  view.Root.Show()
)

ちなみに、「F# Empty Windows App (WPF)」テンプレートで導入されるFsXaml.Wpfは古い(0.9.9)ため、パッケージを更新(現時点では2.1.0)するとビルドが通らなくなります。 ビルドを通すためには、Root プロパティへのアクセスを消してください。

member this.OnClick = this.Factory.CommandSync (fun () ->
  let view = OtherView()
  view.Show()
)

App.fsもコンパイルエラーになるので、そちらの Root も削除しましょう。

[<STAThread>]
[<EntryPoint>]
let main argv =
    App().Run()

F#でWPFやるときのTipsとか(その1)

F# WPF

最近、Full F#でWPFしてるので、Tipsてきなものをまとめようと思います。 その2はTipsがたまればあるかもしれませんが、過度な期待はしないでください。

プロジェクトの作り方

基本的には、Pure F# WPF GUIアプリ開発に向けてに書いてある通りです。 細かい注意点があるので書いておきます。

.NET Frameworkの選択に関する注意点

.NET Frameworkを4.5.1や4.5.2などのような3桁のものを選ぼうとすると、プロジェクト作成に失敗します。 また、4.6を選んでも4.5として作られるので、その点にも注意しましょう。

初回以外での作成

言うまでもないことかもしれませんが一応。 一回でも「F# Empty Windows App (WPF)」を使ってプロジェクトを作った場合、それ以降は「オンライン」の方ではなく、「インストール済み」のテンプレートを選ぶことになります。

MainView.xaml.fs

「F# Empty Windows App (WPF)」というテンプレートでプロジェクトを作ると、下記の内容でMainView.xaml.fsというファイルが生成されます。

namespace ViewModels

open System
open System.Windows
open FSharp.ViewModule
open FSharp.ViewModule.Validation
open FsXaml

type MainView = XAML<"MainWindow.xaml", true>

type MainViewModel() as self = 
    inherit ViewModelBase()    

不要な型

実際にこのテンプレートで作る際、MVVMで作る場合は MainView は不要です。 こいつはC#でのコードビハインドで作る場合に使うものに相当するため、MVVMで行く場合は消してしまって大丈夫です。

当然、C#でのコードビハインドで作る場合は MainViewModel の方が不要なので、消してしまいましょう。 ただし、生成されるコードは完全にMVVMでやること前提なコードになっているので、正直お勧めしません。

細かいことですが、MainViewModel の定義の = の後ろに1つ、その下の行に4つ、空白文字が紛れ込んでいるのも注意しましょう。 気になる人は消してしまうといいでしょう。

App.fs

MainView.xaml.fs同様にテンプレートによって作られるファイルです。

module main

open System
open FsXaml
open System.Windows

type App = XAML<"App.xaml">

[<STAThread>]
[<EntryPoint>]
let main argv =
    App().Root.Run()

モジュール名

なぜか小文字で main というモジュールになっています。 細かい部分ですが、Main とか App とかに変えたほうがいいでしょう。

XAML Type Providerについて

テンプレートで作られる構成がMVVMスタイルで作ることを意識したものになっていますので、あまりXAML Type Providerの出番はないのですが、Type Providerの使い方の例として触れておきます。

コード生成の代替としてのType Provider

C#でのコードビハインドではdesigner.csファイルが自動生成されますが、F#はXAML Type Providerの力によりそういったファイルは生成されません。 その代わりに、type HogeView = XAML<"xamlファイル名", true> のようにしてビュー用の型をXAMLから生成することになります。

テンプレートによって生成されたプロジェクトを弄って、ちょっと使って見ましょう。

不要なファイルを消す

XAML Type Providerを使う場合は次のファイルは不要です。消してしまいましょう。

MainWindow.xamlを書き換える

<Window
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:local="clr-namespace:ViewModels;assembly=FsEmptyWindowsApp3"
    xmlns:fsxaml="http://github.com/fsprojects/FsXaml"
    Title="MVVM and XAML Type provider" Height="200" Width="400">
    <Grid>
        <Label x:Name="Message"/>
    </Grid>
</Window>

Message という名前を持った Label を追加しました。

App.fsを書き換える

App.fsを書き換え、先ほど追加したラベルにテキストを設定してみます。

module App

open System
open FsXaml
open System.Windows

type MainView = XAML<"MainWindow.xaml", true>

[<STAThread>]
[<EntryPoint>]
let main argv =
    // XAML Type Providerによって生成された型のインスタンスを生成し、
    let view = MainView()
    // Messageというプロパティにアクセスし、Contentに文字列を設定
    view.Message.Content <- "Hello XAML Type Provider!"

    // Application.RunにXAMLのRoot要素であるWindowオブジェクトを渡して、
    // アプリケーションを起動
    let app = Application()
    app.Run(view.Root)

これでビルドして実行すると、「Hello XAML Type Provider!」と表示されたウィンドウが開きます。

XAML Type Providerの力によって、自動生成コードなしでビューにアクセスできました。

イベントの登録

これだけだと、全部XAMLに書けばいいじゃん、という話になってしまうので、ボタンを追加してボタンにイベントを登録してみましょう。

MainWindow.xamlの内容を変更します。

<Window
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:local="clr-namespace:ViewModels;assembly=FsEmptyWindowsApp3"
    xmlns:fsxaml="http://github.com/fsprojects/FsXaml"
    Title="MVVM and XAML Type provider" Height="200" Width="400">
    <StackPanel>
        <Label x:Name="Message"/>
        <Button x:Name="Btn">Please Click!</Button>
    </StackPanel>
</Window>

Grid は面倒なので StackPanel に変え、Label の下に Btn という名前でボタンを追加しました。

そして、app.Run(view.Root) の前にイベントを追加するコードを書きます。

view.Btn.Click.Add(fun x ->
    view.Message.Content <- "Clicked!")

これをビルドして実行すると、先ほど作った画面にボタンが追加されたウィンドウが開きます。 そして、ボタンをクリックするとラベルの内容が変わります。

こんな感じで、画面の要素に名前を付けておけば、かなり簡単に画面が作れることが分かります。 まぁ、ちょっとした画面であればXAML Type Providerも選択肢に入れてもいいかな、という感じでしょうか。

Optionに見るコンピュテーション式のつくり方

F#

またの名を入門コンピュテーション式(嘘

この記事は、「コンピュテーション式ってどうやって作ればいいの?」に対する自分なりの回答です。

matchのネスト

optionを返す3つの関数f, g, hがあったとします。 で、このような処理がしたいとしましょう。

let niceFunction (arg1, arg2, arg3) =
  match f arg1 with
  | Some x ->
      match g arg2 with
      | Some y ->
          match h arg3 with
          | Some z ->
              Some (x, y, z)
          | None -> None
      | None -> None
  | None -> None

この関数は、3つの関数すべてが成功したときだけ、その結果をまとめて成功として返しています。 それ以外は何もせずに失敗として返しています。

このように、「すべて成功したときだけ計算したい」という状況はよく起こります。 例えば、fがDBから何か取得する関数、gファイルシステムからファイルを取得する関数、hがネットワークから何か取得する関数だとして、 これらすべてが成功したらそれらの情報を使って何か処理がしたい、というケースが考えられます。

これを毎回書くのはだるいですし、計算のもとになるソースが増えれば増えるほど、matchがネストしていきます。 どうにかできないでしょうか?

コードの「形」の共通部分

ここで注目してほしいのは、このコードの構造が再帰構造になっている点です。

match <expr> with
| Some <v> ->
    +----------------+
    | 全体と似た構造 |
    +----------------+
| None -> None

このように、Someの場合の処理に、全体の構造に似た形が再び現れることが分かります。 まずは、この部分をカスタマイズできるように関数の引数として渡せるようにしてみましょう。

コードの再帰構造の関数化

<expr>の部分と、Someの場合に行う処理を引数に取ればよさそうです。 また、Someの場合に行う処理では、Someが持っている値も必要になるため、関数の引数として渡すことにします。

let matchSome target procForSome =
  match target with
  | Some v -> procForSome v
  | None -> None

この関数は、procForSomeに渡す関数の中で再びmatchSome関数が呼び出されることを想定しています。 これを使うと、最初のコードはこう書けます。

let niceFunction (arg1, arg2, arg3) =
  matchSome (f arg1) (fun x ->
  matchSome (g arg2) (fun y ->
  matchSome (h arg3) (fun z ->
    Some (x, y, z)
  )))

無名関数のネストはありますが、疑似的にフラットに出来ました。 ghの間に何か挟まってきても、

let niceFunction (arg1, arg2, arg3) =
  matchSome (f arg1) (fun x ->
  matchSome (g arg2) (fun y ->
  matchSome (hoge (arg1, arg2, arg3)) (fun w ->
  matchSome (h arg3) (fun z ->
    Some (x, y, w, z)
  ))))

なんとか対処できます。 ただ、末尾の閉じカッコはどんどん増えていきます。 どうにかならないでしょうか・・・

無名関数によるletの除去

さて、ちょっと話題を変えて、letを除去する方法を考えてみましょう。

let x = 2
let y = "aaa"
let z = [0..x]
printfn "%A" (x, y, z)

F#で変数を導入したい場合に真っ先に思い浮かぶのがletです。 しかし、他にも変数が導入できるものがあります。 関数の引数です*1

let x = 42
printfn "%A" x

このコードを無名関数を使って書き直すと、

(fun x -> printfn "%A" x) 42

となります。 これを参考に、最初のコードを書き替えてみます。

(fun x -> (fun y -> (fun z -> printfn "%A" (x, y, z)) [0..x]) "aaa") 2

これでは読めないので、|>を使ってさらに変形します。

2      |> (fun x ->
"aaa"  |> (fun y ->
[0..x] |> (fun z ->
  printfn "%A" (x, y, z))))

2xに入れ、"aaa"yに入れ、[0..x]zに入れ、本体を実行しているように見えませんか?

コンピュテーション式の導入

さて、話を元に戻しましょう。

let niceFunction (arg1, arg2, arg3) =
  matchSome (f arg1) (fun x ->
  matchSome (g arg2) (fun y ->
  matchSome (hoge (arg1, arg2, arg3)) (fun w ->
  matchSome (h arg3) (fun z ->
    Some (x, y, w, z)
  ))))

このコードの末尾部分のカッコをどうにかしたいのでした。 そして、letは無名関数で除去できる、ということを見ました。

では、無名関数をletで除去できないでしょうか・・・? これは残念ながらできません。 ですが、コンピュテーション式を使えばlet!という構文を使うことで可能になります。 let!は、簡単にはコンピュテーションビルダーのBindメソッド呼び出しに変形されます。

builder {
  let! v = expr
  ...
}

このコードは、

builder.Bind(expr, (fun v -> ...))

このように変形されます。

ここで、matchSome関数を思い出してください。

let matchSome target procForSome =
  match target with
  | Some v -> procForSome v
  | None -> None

この関数、Bindが要求する形に似ていますね。 実は、matchSome関数は、ほとんどそのままBindとして使えます。

では、コンピュテーションビルダーを定義してみましょう。

type OptionBuilder() =
  member __.Bind(x, f) = matchSome x f
  member __.Return(x) = Some x

let option = OptionBuilder()

これを使えば、元のコード

let niceFunction (arg1, arg2, arg3) =
  matchSome (f arg1) (fun x ->
  matchSome (g arg2) (fun y ->
  matchSome (h arg3) (fun z ->
    Some (x, y, z)
  )))

は、こう書き直せます。

let niceFunction (arg1, arg2, arg3) =
  option {
    let! x = f arg1
    let! y = g arg2
    let! z = h arg3
    return (x, y, z)
  }

フラットになりました!

このように、コンピュテーション式はある種のネスト構造をフラットに(読みやすく、かつ編集しやすく)書けるようにする機能を持ちます*2

コンピュテーション式を作るには

自分でコンピュテーション式を作ろうとする場合、その「同じような構造がネストしている」ことを発見できねばなりません。 というか順番が逆で、「同じような構造がネストしている」のがだるいからコンピュテーション式でフラットにするのであって、コンピュテーション式が作りたいからそのような構造を見つけるのではないです。

で、先人はいくつも「同じような構造がネストしている」パターンを見つけてくれており、それぞれに名前まで付けてくれています。

例えば、上で例にした'a optionを対象にしたものは、MaybeモナドやOptionモナドとして広く知られています。 コンピュテーション式を作れるようになるための近道、それは色々なモナドを理解し、そのコンピュテーション式を実際に作ってみることです。

余談

モナドさえ理解できればコンピュテーション式は作れるようになるか、というとそういうわけではありません。 コンピュテーション式はモナド以上のことができてしまうため、モナドだけわかってもすべての機能の実装はできません(し、間違った実装を提供してしまいます)。

また、全然モナドじゃないコンピュテーション式も作れます。 作れますが、それが実用的になることはそうそうないでしょう。 コンピュテーション式の基本、それはモナドです。

*1:forやmatchも変数は導入できますが、ここではこれらを使っても意味がないので無視します

*2:それだけではないんですが、基本はこれです

Combine Deep Dives

F#

この記事はF# Advent Calendar 2015の17日目の記事です。

今日はコンピュテーション式の Combine について取り上げます。

詳説コンピュテーション式をある程度理解していると分かりやすいかもしれません。

内容を簡単にまとめると、

  • Delay の中で受け取った関数を実行する場合、副作用を考慮したときに問題が起こらないか考えること
  • ゼロ値がある型で Combine を実装するときは、Delay の中で受け取った関数を実行せずに、Combine の中で実行すること
  • ゼロ値がない型で Combine を実装するときは、Combine の実装は Bind に流し、ZeroM<unit> を返すように実装すること

です。

Combineの目的

Combine は、コンピュテーション式の2つの式を繋ぐために使います。 コンピュテーション式中の変換対象となる式を ce プレフィックスで表す場合、ce1; ce2 という式*1Combine を使って下記のように変換されます。

(* bはビルダークラスのインスタンス *)
b.Combine(ce1の変換結果, b.Delay(fun () -> ce2の変換結果))

あれあれ、Delay というメソッドが出てきました。 このように、Combine を使うためには Delay を実装する必要があります。

Delayの実装

Delay をどうするかは、2通りの方法があります。 まずは、単純な方法から見てみます。

Delayの実装方法その1

Combine の引数としては、ce1 の変換結果と ce2 の変換結果がそのまま渡されるのがとりあえずわかりやすい気がしませんか? そういうことにしておくと、Delay の実装はこう決まります。

(* 引数の関数を実行するだけ *)
member __.Delay(f) = f ()

こうすることで、Combine には ce1 の変換結果と ce2 の変換結果がそのまま渡されます。 この実装方針を取った場合、CombineシグネチャMSDNのコンピュテーション式のページにあるように、

M<'T> * M<'T> -> M<'T>

または

M<unit> * M<'T> -> M<'T>

となるでしょう。 実際に具体例でみてみます。

listの場合

'a listCombine を考えてみます。

list {
  yield 10
  yield 20
}

とあったとき、望む結果が [10; 20] だとすると、Combine が意味するのはリスト同士の結合、つまり List.append です。 実装してみましょう。

type ListBuilder () =
  member __.Yield(x) = [x]
  member __.Delay(f) = f ()
  member __.Combine(xs, ys) = List.append xs ys

この場合、Combineシグネチャ'a list * 'a list -> 'a list になります。

optionの場合

'a optionCombine を考えてみます。

option {
  if cond then
    return 10
  return 20
}

とあり、cond によって

cond の値 結果
true Some 10
false Some 20

となってほしいとします。 この場合、Combine が意味するのは match による分岐です。 else の伴わない if には Zero も必要なので、実装します。

type OptionBuilder () =
  member __.Return(x) = Some x
  member __.Zero() = None
  member __.Delay(f) = f ()
  member __.Combine(x, y) =
    match x with
    | Some x -> Some x
    | None -> y

この場合、Combineシグネチャ'a option * 'a option -> 'a option になります。

Delayの実装方法その2

上の Delay の実装、無名関数でくるんだものをそのまま実行しており、Delay の存在意義が分かりません。 無名関数でくるんだ結果を Delay に渡すことなどせずに、直接 Combine に渡してくれ、と思ってしまっても仕方ありません。

では、なぜ Delay なんてものが Combine の変換に出てくるのでしょうか? 上で実装した OptionBuilder を使って、上の Delay の実装には問題があることを見てみます。

let option = OptionBuilder()

option {
  if true then return 10
  printfn "hello"
  return 20
}

このコードは Some 10 を返しますが、「hello」も表示されてしまいます。 コンピュテーション式の部分を変換してみると、次のようになります*2

let b = option
b.Combine(
  (if true then b.Return(10) else b.Zero()),
  b.Delay(fun () -> printfn "hello"; b.Return(20)))

Delay は受け取ったラムダ式をそのまま実行するように実装しましたので、Combine を呼び出すラムダ式の中の式が実行されてしまうのです。 これを避けるためには、Delay に渡ってきた関数は実際に必要になるまで実行を遅延する必要があります。

この方針で実装した OptionBuilder は下記のとおりです。

type OptionBuilder () =
  member __.Return(x) = Some x
  member __.Zero() = None
  member __.Delay(f) = f (* ここでは実行せず、渡された関数をそのまま返す *)
  member __.Combine(x, rest) =
    match x with
    | Some x -> Some x
    | None -> rest () (* xがNoneのときのみ、渡された関数を実行する *)

この場合、Combineシグネチャ'a option -> (unit -> 'a option) -> 'a option となり、MSDNに書いてあるシグネチャとは異なるものになります。 まぁ、通常のシグネチャと言っている通り、別に必ずその通りにしなければいけないわけではないので、そういうものだと思ってください。 横道にそれますが、別に Combine の実装の結果の型を 'a list option にしてしまってもいいのです。変換された結果がコンパイル可能であれば、どんなシグネチャにしても構いません(ただしそういう実装にすると、Combine をネスト出来なくなり、とても使いにくくなりますが)。

さぁではこれで実行してみましょう!

let option = OptionBuilder()

let res =
  option {
    if true then return 10
    printfn "hello"
    return 20
  }

printfn "%A" res

実行結果:

<fun:res@41>

!?!?

res の型が関数になっちゃってますね。 これは、Delay を実装するとコンピュテーション式全体も Delay でくるまれるように変換されるのが原因です。 上の方でコンピュテーション式の変換結果をこう書きましたが、

let b = option
b.Combine(
  (if true then b.Return(10) else b.Zero()),
  b.Delay(fun () -> printfn "hello"; b.Return(20)))

正しくはこうです。

let b = option
(* 一番外側もDelayされる *)
b.Delay(fun () ->
  b.Combine(
    (if true then b.Return(10) else b.Zero()),
    b.Delay(fun () -> printfn "hello"; b.Return(20))))

最初の Delay の実装では渡された関数を Delay の中で実行していたので問題になりませんでしたが、今回の Delay の実装は渡された関数をそのまま返すため、最終的な結果が関数になってしまうのです。 さて困った・・・

Runの実装

この問題は、コンピュテーションビルダーに Run を実装することで解決できます。 コンピュテーションビルダーに Run が実装されていると、一番外側の Delay のさらに外側に Run メソッド呼び出しが挟まれます。 つまり、このように変換されることになります。

let b = option
b.Run(
  b.Delay(fun () ->
    b.Combine(
      (if true then b.Return(10) else b.Zero()),
      b.Delay(fun () -> printfn "hello"; b.Return(20)))))

Run には Delay の結果が渡されることから、Run の実装をこうすればいいでしょう。

member __.Run(f) = f ()

これで、望みの動きをする OptionBuilder が手に入りました。

いい感じのOptionBuilder

type OptionBuilder () =
  member __.Return(x) = Some x
  member __.Zero() = None
  member __.Delay(f) = f
  member __.Combine(x, rest) =
    match x with
    | Some x -> Some x
    | None -> rest ()
  member __.Run(f) = f ()

あとは BindReturnFrom などを提供していきましょう。

ListBuilder再考

ListBuilderCombineOptionBuilder のような考慮は不要なのでしょうか? 考えてみましょう。例えば、以下のようなコードはどうなるべきでしょうか?

let xs = list {
  if false then
    printfn "hello"
    yield 10
  yield 20
}

「hello」とは表示されずに、[20] が返ってきてほしいですよね。 このコンピュテーション式の変換結果を見てみましょう。

let b = list
b.Delay(fun () ->
  b.Combine(
    (if false then printfn "hello"; b.Yield(10) else b.Zero()),
    b.Delay(fun () -> b.Yield(20))))

このように、printfnif 式の中にあるため、単純な Delay の実装で何も問題ありません。

let xs = list {
  yield 10
  printfn "hello"
  yield 20
}

この例では、[10; 20] が返ってきてほしいため、やはり printfn も実行されるべきでしょう。 これらのことから、ListBuilder は最初の実装で十分、ということになります。 seq を再実装したい場合は最初の実装では不十分ですが、これがなぜかを考えるのは読者への課題としておきましょう。

もう一つのCombine

Combine の通常のシグネチャは、

M<'T> * M<'T> -> M<'T>

または

M<unit> * M<'T> -> M<'T>

でした。 しかし、今まで見てきたものはすべて前者の派生形であり、後者は出てきませんでした。 後者の第一引数側が unit になるような Combine はどういうときに出てくるのでしょうか?

今までの例の共通点

今まで見てきたのは、listoption でした。 この2つの共通点はいくつかありますが、ここではゼロ値を持つ点が重要です。 list の場合は [] (空リスト)が、option の場合は None がゼロ値です。 型の定義を見てみると分かりやすいです。

type 'a list =
  | []         (* ゼロ値 *)
  | (::) of 'a * 'a list

type 'a option =
  | None       (* ゼロ値 *)
  | Some of 'a

このように、ゼロ値とそれ以外の場合でデータコンストラクタが別になっているのが分かります。 これらゼロ値は、'a がなんであろうが使えます。

さて、ではこのような「ゼロ値」がないような型を考えてみます。

Async

F#で非同期計算を表す型である Async<'T> を見てみます。 この型は listoption と違って、データコンストラクタが1つしかありません*3

(* https://github.com/Microsoft/visualfsharp/blob/2d413fb940aa1677688454c50b8ec05cd3b6f78f/src/fsharp/FSharp.Core/control.fs#L584より *)
[<NoEquality; NoComparison>]
[<CompiledName("FSharpAsync`1")>]
type Async<'T> =
    P of (AsyncParams<'T> -> FakeUnitValue)

そのため、ゼロ値はありません。 (ちなみに、FakeUnitValueunit がIL的には void に落ちてしまうため末尾最適化の対象にならない(tail. プレフィックスが発行されない)問題を回避するために導入された型であり、unit と思ってもらって構いません)

しかし、AsyncBuilderZero メソッドを次のシグネチャで提供しています。

member Zero : unit -> Async<unit>

Async<unit> 型の値はゼロ値ではありません。 例えば 'a optionNone は実際の型が int option だとしても string option だとしても使えます。 ある意味、ジェネリックな値として振る舞うのです。

それに対して、AsyncBuilderZero メソッドAsync<'a> ではなく Async<unit> を返します。 この Zero メソッドの定義に意味はあるのでしょうか? Zero 単体ではわかりにくいので、Combine も見てみます。

let sequentialA p1 p2 =
    bindA p1 (fun () -> p2)

(* snip *)

member b.Combine(p1, p2) = sequentialA p1 p2

引数の順番に注意する必要がありますが、なるほど Bind に落ちるんですね。 bindA の第二引数の関数が受け取る型が unit になっている点に注目してください。 つまり、p1 の型は Async<unit> である必要があります。 Combine の型が Async<unit> * Async<'T> -> Async<'T> になりました! さらに、Zero メソッドの戻り値の型と Combine の第一引数の型が一致していることから、両者を組み合わせて使えることがわかります。

このように、ゼロ値が用意されていない(できない)型の場合に、M<unit> * M<'T> -> M<'T> というバージョンの Combine を提供すると、便利な場合があります。 Combine の第一引数側を無視して、第二引数側を常に返すようなイメージですね。 また、その場合は Zero メソッドM<unit> 型の値を返すように定義します。

ということで、AsyncBuilder ではこういうコードがコンパイルできます。

async {
  if cond1 then printfn "if1"
  if cond2 then printfn "if2"
  return "str"
}

おぉ、便利っぽい!

ZeroとCombineの罠

ただ、注意点として、このようなコードもコンパイルできてしまいます。

async {
  if true then
    return ()
  return "str"
}

「え、型はどうなってるの?」と思った方、return という単語のイメージに引きずられています。 F#の return は別にコンピュテーション式全体の型を決めるわけではありません。 AsyncBuilder での Combine は、第一引数側を無視して、第二引数側を常に返すようなイメージでした。 第一引数側は Async<unit> になっているため、Combine によって無視(厳密には無視しているわけではないが・・・)されて、第二引数側が返されます。 直観と反している気はしますが、そういうものです。

展開結果を見ればもう少し納得しやすいかもしれません。

let b = async
b.Delay(fun () ->
  b.Combine(
    (if true then b.Return() else b.Zero()), (* 第一引数側の結果にかかわらず *)
    b.Delay(fun () ->
      b.Return("str"))))                     (* 第二引数側の結果が使われる *)

こういうビルダーを使うときは、return () と書かないほうが無難でしょう。 unit を受け取る Returnオーバーロードして、Obsolete 属性でコンパイルエラーにする、とかできるかもしれませんのでそういうビルダーが作りたくなった際に参考にしてください。

returnできない罠

型の問題ではなく、「え、return したのにその後ろのコードが実行されるの?」と思った方、return という単語のイメージに引きずられています。 F#の return は別にその時点で結果を返すようなものではありません。 単にビルダーの Return メソッドが呼び出されるだけであり、Return 自体は実行の流れを制御できません。

AsyncBuilderZero メソッドが返す値はゼロ値ではありませんでした。 また、Combine の第一引数が Async<unit> に固定されているため、

async {
  if true then
    return "str1" (* ここにstringは置けない。unitである必要がある *)
  return "str2"
}

とは書けません。コンパイルエラーになります。 このあたりを解決するために、Stateを使ったり継続を使ったりできるかもしれませんが、Async では未検証です。 気になった方は以下のリンク群をどうぞ。

F#のコンピュテーション式を提供するライブラリ事情

yieldとreturnの話でも調べたのですが、現在の状況を調べてみました。 調べたのは下記のコードです。

FSharpx.Extras

まず、Delay の実装ですが、これは受け取った関数を実行せずにそのまま返しています。 そのため、Combine の中で第二引数を実行することになります。 しかし、これを Option.bind にそのまま渡しているため、Combine の第一引数の型が unit option に固定化されてしまっています。 せっかく Zero メソッド'a option のゼロ値である None を返しているにもかかわらず、これでは宝の持ち腐れです。

ということで、このようなコードのコンパイルが通ってしまいます。

maybe {
  if true then
    return () (* ??? *)
  return 10
}

さらに、Combine の実装が第一引数として unit option を要求するため、下記のコードはコンパイルが通りません。

maybe {
  if true then
    return 10 (* compile error *)
  return 20
}

これでは Zero メソッドの戻り値を None にしている意味が全くありません。

ExtCore

前回調査時は Zero が返す値が Some () でしたが、そこは None に修正されていました。 しかし、Combineオーバーロードされているうえ、シグネチャもおかしい・・・

member Delay: (unit -> 'T option) -> (unit -> 'T option)
member Combine: unit option * 'T option -> 'T option (* 使われないオーバーロード *)
member Combine: unit option * (unit -> 'T option) -> 'T option
  (* 実際はunit optionではなく'Tではないジェネリック型になっているけど、
     Delayの呼び出しが第二引数に渡されるため、実質unitになる *)

Delay の実装が受け取った関数をそのまま返す実装になっているため、最初の Combineオーバーロードは使われません。 しかも、FSharpx.Extras同様に Combine の実装が Bind を呼び出しているため、やはり下記コードはコンパイルできません。

maybe {
  if true then
    return 10 (* compile error *)
  return 20
}

Zero の実装も意味がなく、やはり下記コードはコンパイルが通ってしまいます。

maybe {
  if true then
    return () (* ??? *)
  return 10
}

なかなかの迷走ぶりです。

Visual F# PowerTools

Visual F# PowerToolsが持っている MaybeBuilder は、過去のバージョンのExtCoreからコピーしてきたものです。 そのため、ZeroSome () になっており、Delay は渡された関数を実行しており、Combineunit option * 'T option -> 'T option 版になっています。 ZeroCombine の整合性は取れていますが、ゼロ値を使っていないのが微妙です。 また、Delay が実行を遅延しないバージョンなので、副作用と一緒には使えません。

まぁ、この MaybeBuilder はVFPTの内部のみでしか使われない想定のため、それほど問題ではないでしょう。

Basis.Core

最近全然更新してませんが、このライブラリはそもそも巷のライブラリのコンピュテーションビルダーがことごとくダメ実装だったから作ったライブラリなので、これまで見てきたような問題はありません。

(* コンパイルエラー *)
option {
  if true then
    return ()
  return 10
}
(* Some 10 *)
option {
  if true then
    return 10
  return 20
}

ただし、while の中での return できるようにStateを使った実装をしているため、ZeroCombine もこれまで見てきたものとは全然違うシグネチャおよび実装になっています。

member this.Zero() = None, Continue
member this.Combine((x: _ option, cont), rest: unit -> _ option * FlowControl) =
  match cont with
  | Break -> x, Break
  | Continue -> if x.IsSome then x, Break else rest ()

この実装についての話は、(再掲になりますが)下記のURLをどうぞ。

まとめ

Combine を中心にいろいろなことを見ました。

  • Combine の目的
  • Combine 実装に絡む Delay の実装2通り
    • 単純な Delay の実装の罠
    • もう一つの Delay の実装と Run
  • 単純な Delay の実装で十分なケース (ListBuilder)
  • 第一引数として M<unit> を取る Combine について
    • ゼロ値について
    • ゼロ値がない場合(Async<'T>)の Combine とその罠
      • return () 出来てしまう
      • return x 出来ない
  • コンピュテーション式を提供するライブラリの Combine
    • 大体のライブラリが何かしら問題を抱えている

皆さんがコンピュテーションビルダーを書く場合で、Combine を提供したくなったときにこのエントリを思い出していただければありがたいです。 いやぁ、コンピュテーション式は楽しいなぁ。

*1:セミコロンは改行とインデントで置き換え可能

*2:一部意図的に間違っていますが、そのあたりは後述します

*3:さらに、シグネチャファイルによってただ一つのデータコンストラクタも外部には隠ぺいされている

あなたの知らないF#についての7つの事柄

F#

この記事はF# Advent Calendar 2015の13日目の記事です。

タイトルは釣りで、今回はMicrosoft/visualfsharpリポジトリをウォッチしている中で見つけた個人的に面白かったIssueを取り上げます。

名前空間内でのprivateの意味

現状のF#では、名前空間内でprivateを使った場合に、privateっぽくない挙動を示します。

同じプロジェクト内に、M1.fs, M2.fs, M3.fsを下記の内容のように作ってください。

(* M1.fs *)
namespace NS

module private M1 =
  let x = 10
(* M2.fs *)
namespace NS

module M2 =
  let x = M1.x (* OK *)
(* M3.fs *)
namespace NS.Child

module M3 =
  let x = NS.M1.x (* OK *)

このように、名前空間内にprivateなモジュール(もしくは型)を作っても、同一アセンブリの同一名前空間以下にある型からはアクセスできるのです。 今後のバージョンでは、同一ファイルではない場合に警告になるように変更されるようです。 この挙動に依存している場合、privateではなくinternalを使うように変更しておくといいでしょう。

元ネタ: Suggestion: restrict "private" for items in namespaces to mean "private to the namespace declaration group"

未使用変数の誤検知

F#3.0からは、コンパイルオプションに--warnon:1182を付けることで未使用変数を警告扱いにできるようになっています。

extern指定したメソッドの引数に対する誤検知

extern指定したメソッドの引数を未使用変数として誤検知します。

type ControlEventHandler = delegate of int -> bool

[<DllImport("kernel32.dll")>]
extern void SetConsoleCtrlHandler(ControlEventHandler callback, bool add)
(* --warnon:1182してコンパイルすると、callbackとaddが未使用変数として検知されてしまう *)

これはバグなので、今後のリリースで修正されると思われます。 「(警告をエラー扱いにしている等の理由で)今回避したいんだ!」というときは、識別子を_で始めればOKです。

type ControlEventHandler = delegate of int -> bool

[<DllImport("kernel32.dll")>]
extern void SetConsoleCtrlHandler(ControlEventHandler _callback, bool _add)
(* --warnon:1182してコンパイルしても、_から始まる識別子は除外されるので警告にならない *)
(* ただし、FSharpLintを使っている場合"_を識別子に含めるな!"という警告を出すようになる *)

元ネタ: External function arguments flagged as unused

クエリ式での誤検知

クエリ式でも誤検知します。

(* for xの位置でxが使われていないという警告が出る *)
let res =
  query { for x in [1;2;3] do
          where (x > 2)
          select 1 }

(* 同上 *)
let res =
  query { for x in [1;2;3] do
          let y = x
          select y }

(* これは出ない *)
let res =
  query { for x in [1;2;3] do
          where (x > 2)
          select x }

元ネタ: Query expressions and --warnon:1182

プライマリコンストラクタの引数の型注釈

プライマリコンストラクタの引数に型注釈を付けないと、意図しない推論結果を引き起こします。

type ISomeInterface = interface end
type C1() = interface ISomeInterface
type C2() = interface ISomeInterface

type SomeClass<'a when 'a :> ISomeInterface> (value) =
  member x.Value : 'a = value

  (* 警告「型変数'b'は型''a'に制約されました」 *)
  member x.Method(newValue: 'b when 'b :> ISomeInterface) =
    SomeClass<'b>(newValue)
let x = SomeClass<C1>(C1()) (* OK *)
let y = x.Method(C1()) (* OK *)
let z = x.Method(C2()) (* コンパイルエラー *)

Methodに明示的に型引数を付けてみましょう。

(* コンパイルエラー「この束縛に関する1つまたは複数の明示的クラスまたは関数型の変数は、他の型に制限されているため、ジェネリック化できませんでした。」 *)
member x.Method<'b when 'b :> ISomeInterface>(newValue: 'b) =
  SomeClass<'b>(newValue)

駄目みたいです。

プライマリコンストラクタの引数には常に型注釈を付けるようにしましょう。

type SomeClass<'a when 'a :> ISomeInterface> (value: 'a) =
  member x.Value = value

  member x.Method(newValue: 'b when 'b :> ISomeInterface) =
    SomeClass<'b>(newValue)

元ネタ: Bug in the type checker with type variables

ジェネリックメソッドの制限

現状のF#では、ジェネリックメソッドは第一級の値として使えません。

module M =
  let f<'a>() = ()

type C =
  static member M<'a>() = ()
let x = M.f<int> (* OK *)
let y = C.M<int> (* コンパイルエラー「予期しない型引数です」 *)

() |> M.f<int> (* OK *)
() |> C.M<int> (* コンパイルエラー *)

元ネタ: Provided methods with static params can't be used as first-class function values

リスト式(や配列式)の型推論のコーナーケース

下記のコードのコンパイル結果は一貫性がないように見えます。

let f (xss: 'a seq seq) = ()

f [ [ 'c' ] ] (* OK *)

let charListList = [ [ 'c' ] ]
f charListList (* コンパイルエラー「型'char list list'は型'seq<seq<'a>>'と互換性がありません」 *)

F#では、リスト(や配列)の要素の型がリスト式(や配列式)の型チェックよりも前に分かっている場合、各要素をその要素型にアップキャストを試みます。 これは、継承を考慮すると仕方なかった選択のようです。

例えば、型Widgetを継承したLabelButtonがあったとします。

let xs: Widget list = [ Label(); Button() ] (* OK *)

これは、リスト式[ Label(); Button() ]の型チェック前にこのリスト式の型がWidget listになるとわかっている(xsに型注釈が付いている)ため、リスト式の各要素はWidget型にアップキャストされます。 そのため、このコードはコンパイルが通ります。 ではこちらはどうでしょう?

let xs = [ Label(); Button() ] (* コンパイルエラー「この式に必要な型はLabelですが、ここでは次の型が指定されています Button」 *)

これは、リスト式の型チェック前に型がわかっていないので、コンパイルエラーです。

さて、これで元のコードがなぜ一貫性がないように見えたかがわかります。 元のコードを再掲します。

let f (xss: 'a seq seq) = ()

f [ [ 'c' ] ] (* OK *)

let charListList = [ [ 'c' ] ]
f charListList (* コンパイルエラー「型'char list list'は型'seq<seq<'a>>'と互換性がありません」 *)

一回目のfの呼び出しでは、引数の型が「'a seq seq」になることがわかっています。 一番外側のseqの要素の型は、'a seqになることがわかっている、ということです。 実際に渡している要素は[ 'c' ]であり、これはchar list型です。 char list型はchar seq型にアップキャスト可能(listseqを実装している)ため、コンパイルが通るわけです。

二回目のfの呼び出しでは、リスト式ではなくいったん変数に入れたものを渡そうとしています。 charListListの型はその名前通り、char list listです。 リスト式ではないので要素型のアップキャストは行われず、'a seqという型を期待しているところにchar listがくるため、コンパイルエラーになるのです。

これを回避するためには、フレキシブル型を使います。

let f (xss: seq<#seq<'a>>) = () (* 'a #seq seq とは書けないっぽい *)

f [ [ 'c' ] ] (* OK *)

let charListList = [ [ 'c' ] ]
f charListList (* OK *)

フレキシブル型の表記(#seq<'a>)は型制約のあるジェネリック型('b when 'b :> seq<'a>)の略記法です。 これによって、seq<'a>の代わりにその派生型も許されるようになったため、char list list型の変数も渡せるようになりました。

元ネタ: Possible inconsistency in type unification

メソッド(もしくはコンストラクタ)呼び出しの特別ルール

obj(もしくは'a)を1つ取るメソッドがあり、ほかにオーバーロードの候補がない場合、コンパイルできなさそうでできるコードが書けます。

type C =
  static member M(x: obj) = ()
C.M() (* OK *)

え、引数は?と思うかもしれませんが、引数は()が渡っています。 この特別扱いルールは、

場合のみに有効です。 そのため、オーバーロードを追加するとこのコードは通らなくなります。

type C =
  static member M(x: obj) = ()
  static member M(x: int, y: int) = ()
C.M()   (* コンパイルエラー *)
C.M(()) (* OK *)

このルール、何か嬉しい場合があるんでしょうか・・・

元ネタ: Implicit class constructor with a single obj argument could be called without argument which will pass null as argument

まとめ

今まで知らなかった言語仕様とかに気付かされることが多いので、登録されたIssueを読んでみると面白いです。 Resolution By Designタグが付けられたIssueがまずはおススメです。

F#のクラス(の主に定義する部分)についてまとめ

F#

この記事はF# Advent Calendar 2015の5日目の記事です。 4日目は@n_enotの「F# でTDDした話 前編?」でした。

※業務連絡。F# Advent Calendar 2015の参加者の皆さん、今年は登録順ではなく、申請順になってしまっているようなので、イベントページに登録はしたけどまだ書く日付が決まっていない方は、イベントページを編集して書きたい日に自分の名前を書いておくようにしましょう。

関数型の何かと思った?

残念、クラスベースオブジェクト指向プログラミングの話でしたー。

今までF#のクラス定義に関する機能がよくわかっていなかった(まともに使ってこなかった、といってもいい)ので、ちょっとまとめつつ勉強してみました。 基本的に、言語仕様の「8.6 Class Type Definitions」をまとめた内容になっています。 より実践的な方向から再構成しているので、仕様書よりも読みやすく意義も伝わりやすいかな、と思います*1

クラス定義の基本

F#でのクラス定義は次のようになっています。

type 型名 =
  class
    クラス本体
  end

F#では、クラスは何もしなくてもシリアライズ可能です。 シリアライズ不可能にする場合、AutoSerializable(false)属性を与える必要があります。

class/endの省略

通常、class/endは省いて定義します。

Class属性によるclass/endの省略

Class属性をつけると、class/endは不要です。

[<Class>]
type 型名 =
  クラス本体

Classのほかに、Interface属性やStruct属性もあります。 列挙型は構文が全く違うためか、Enum属性はありません。

ただ、これから説明する方法によるclass/endの方が便利なので、Class属性は個人的にはあまり使いません。

クラス固有の要素によるclass/endの省略

下記の要素を持つ場合、class/endは不要です。

  • プライマリコンストラクタ(primary constructors)
  • 追加オブジェクトコンストラクタ(additional object constructors)
  • 関数定義(function definitions)
  • 値定義(value definitions)
  • 非抽象メンバー(non-abstract members)
  • 引数付きの継承宣言(inherit declarations that have arguments)

これらの詳しい説明は、それぞれの要素の説明の際に合わせてします(関数定義は引数があるかどうかだけなので、この記事では値定義としてまとめます)。 とりあえずは、「ほとんどの場合でclass/endは省略でき、コンパイルエラーになったらclass/endを書くかClass属性をつける」と覚えてしまって大丈夫です。

コンストラクタの定義

F#には、コンストラクタは次の2種類があります。

プライマリコンストラクタ

プライマリコンストラクタは、型名の後ろに引数リストを書くことで定義します。

type 型名 (引数リスト) =
  クラス本体

この引数リストには、識別子か、型指定した識別子しか書けません。 例えば、

type SomeClass (x: int, y) = ...

はOKですが、

type SomeClass ((x1, y1), (x2, y2)) = ...

のように、複雑なパターンは書けません(コンパイルエラーになる)。 複雑なパターンが書きたい場合は、値定義(value definition)を使います。

type SomeClass (p1, p2) =
  let (x1, y1) = p1
  let (x2, y2) = p2
  ...

クラスの本体部分に書かれたメンバー定義(追加オブジェクトコンストラクタ含む)以前の部分は、プライマリコンストラクタの本体部分とみなせます。 これらのコードはプライマリコンストラクタの呼び出し時に実行されます。 letのほかにdoも使えます。

type SomeClass () =
  let x = 10
  do printfn "%d" x

この例では、SomeClassを生成するたびに10と表示されます。 他の部分のdo束縛と違い、ここでのdoは省略できない点に注意してください。

プライマリコンストラクタの補佐としての追加オブジェクトコンストラクタ

基本的にはプライマリコンストラクタを使えばいいですが、主に2つ以上のコンストラクタが提供したい場合には追加オブジェクトコンストラクタを定義します。

例えば、intの値を2つ保持するクラスAが定義したいとします。 この場合、プライマリコンストラクタを使って

type SomeClass (x: int, y: int) =
  ...

とすることになりますが、yの方は大体のケースで0固定だ、という場合、プライマリコンストラクタ以外にコンストラクタが欲しくなります。 こういう場合に追加オブジェクトコンストラクタを使います。

type SomeClass (x: int, y: int) =
  new (x) = SomeClass(x, 0)
  ...

このように、newキーワードを使うことで追加オブジェクトコンストラクタを定義できます。 追加オブジェクトコンストラクタでは、本体の最後の式としてコンストラクタを呼び出す必要があります*2

コンストラクタの呼び出し後に何か副作用のあるような処理がしたい場合、thenを使います。

type SomeClass (x: int, y: int) =
  new (x) =
    printfn "プライマリコンストラクタを呼び出します。"
    SomeClass(x, 0)
    then
      printfn "プライマリコンストラクタが呼び出されました。"

それ以外の役割の追加オブジェクトコンストラクタ

継承が絡んでくるので、まず先に継承についてを説明します。

継承

継承はinheritキーワードを使い、値定義よりも前に宣言します。

type SomeBaseClass (x: int) = do ()
type SomeSubClass () =
  inherit SomeBaseClass(10)

  let someValue = 20

クラスがプライマリコンストラクタを持つ場合、継承するクラス名に続けてそのクラスのコンストラクタに渡す引数を書きます。 上の例では、SomeBaseClassコンストラクタを引数10で呼び出しています。 値定義など、継承宣言よりも後ろに書く必要のある変数等は使えないので注意してください。

また、継承宣言を省略すると、暗黙的にobjが継承されます。 明示的にobjを継承した場合とbase(基底クラスのメンバーへの参照)の挙動が微妙に異なりますが、気にする場面は出てこないでしょう。

基底クラスの異なるコンストラクタが呼びたい場合に使う追加オブジェクトコンストラクタ

プライマリコンストラクタを持つ場合、すべてのコンストラクタは継承宣言で同時に呼び出される単一の基底クラスのコンストラクタが呼び出されます。 これでは困ったことになる場合があります。 例えば、基底クラスがシリアル化コンストラクタを提供しており、派生クラスもシリアル化可能にしたい独自の状態を持っている場合などです。 この場合、派生クラスは通常のコンストラクタとシリアル化コンストラクタで別々の基底クラスのコンストラクタを呼ぶ必要があります。

type ParseException (row: int, col: int) =
  inherit FormatException("failed to parse")

  new (info: SerializationInfo, context: StreamingContext) =
    (* ここで基底クラスのシリアル化コンストラクタを呼びたいけど呼べない! *)

プライマリコンストラクタを提供せずに、すべてを追加オブジェクトコンストラクタにすることで、これが実現できます。 まず、プライマリコンストラクタを提供しない場合、inherit宣言に引数リストを付けれなくなります。

type ParseException =
  inherit FormatException
  ...

次に、プライマリコンストラクタが無くなったことによって保持できなくなったrowcolvalとしてフィールド化します。 valは値定義のletと比べられることも多いですが、letはあくまでプライマリコンストラクタに付属するものに対して、valはメンバー(フィールド)です。 そのため、プライマリコンストラクタを定義しないとletは使えません(今回の例ではletは使えない、ということです)。 letはフィールドになるとは限りませんが、valは常にフィールドになりますし、値定義ではなくメンバー定義のため、すべての値定義(do含む)よりも後ろに書く必要がある点に注意してください。 valは宣言と同時に初期値を持たせることはできませんが、(DefaultValue属性の付かない)valは、そのすべてをすべてのコンストラクタで初期化することが求められます*3。 これは、プライマリコンストラクタを持つ場合はDefaultValue属性の付かないvalは定義できないことを意味します*4

type ParseException =
  inherit FormatException

  val Row: int
  val Col: int
  ...

valは既定ではpublicなので、先頭を大文字にしてみました。

さて、本題の追加オブジェクトコンストラクタです。 これまでは追加オブジェクトコンストラクタでは他のコンストラクタを呼び出していました(delegate construction)が、基底クラスを呼び出すためには明示的構築(explicit construction)を行う必要があります。

type ParseException =
  inherit FormatException

  val Row: int
  val Col: int

  new (row, col) =
    { inherit FormatException("failed to parse"); Row = row; Col = col }

  new (info: SerializationInfo, context: StreamingContext) =
    let r = info.GetInt32("Row")
    let c = info.GetInt32("Col")
    (* F#ではセミコロンは改行に置き換え可能 *)
    { inherit FormatException(info, context)
      Row = r
      Col = c }

  (* ISerializableの実装は後で *)

このように、追加オブジェクトコンストラクタを使うことで、基底クラスの異なるコンストラクタが呼び出せるようになります。 ちなみに、オブジェクト構築後に副作用のある処理を実行したい場合は、thenを使います。

インターフェイスの実装

F#には空のインターフェイスの指定か、インターフェイスの明示的実装しかありません。

空のインターフェイスの指定

空のインターフェイスの指定は

type SomeClass () =
  interface IEmptyInterface

のように書きます。

インターフェイスの明示的実装

インターフェイスを実装するには、クラス名に続けてwithを書き、その後にインターフェイスの持つメンバーの実装を書きます。

type ParseException =
  inherit FormatException

  val Row: int
  val Col: int

  new (row, col) =
    { inherit FormatException("failed to parse"); Row = row; Col = col }

  new (info: SerializationInfo, context: StreamingContext) =
    let r = info.GetInt32("Row")
    let c = info.GetInt32("Col")
    { inherit FormatException(info, context); Row = r; Col = c }

  interface ISerializable with
    member x.GetObjectData(info, context) =
      base.GetObjectData(info, context)
      info.AddValue("Row", x.Row)
      info.AddValue("Col", x.Col)

インターフェイスの実装では、すでにインターフェイスで型が明示されるため、すべてのメンバーで型を指定する必要がないのも特徴です。

可視性

F#では至る所で不変が既定になっているため、可視性が設定できるものはpublicが既定と思ってかまいません(一部の例外の方を覚えればよい)。 もちろん、可視性はカスタマイズ可能ですので、可視性を狭めることは可能です。

また、追加オブジェクトコンストラクタの項でも書きましたが、letはプライマリコンストラクタの一部であるため、letには可視性を設定できません。 コンストラクタ内で作ったローカル変数くらいに思っておいた方が無難でしょう。

クラス自身の可視性

クラス自身の可視性は、typeとクラス名の間に書きます。

(* 型をinternalに制限 *)
type internal SomeClass () = do ()

プライマリコンストラクタの可視性

プライマリコンストラクタの可視性は、クラス名と(の間に書きます。

(* 型はpublicのまま、プライマリコンストラクタをinternalに制限 *)
type SomeClass internal () = do ()

クラス自身とプライマリコンストラクタの両方に可視性を設定すると、一行に2つの可視性が書かれることになります。

(* 型はinternalに、プライマリコンストラクタはprivateに制限 *)
type internal SomeClass private () = do ()

追加オブジェクトコンストラクタの可視性

追加オブジェクトコンストラクタの可視性は、new(の間に書きます。

type SomeClass (x: int) =
  new internal () = SomeClass(0)

自己参照

プライマリコンストラクタでの自己参照

プライマリコンストラクタで自分自身(いわゆるthis)のメンバーを使いたい場合、プライマリコンストラクタの引数リストの閉じかっこと=の間にasを使って書きます。

(* 名前はthisでもxでもなんでもいい(ここではself) *)
type SomeClass () as self =
  ...

ただ、これを実際に使ったことがあるのは、型プロバイダーを実装する時くらいでしょうか・・・

追加オブジェクトコンストラクタでの自己参照

追加オブジェクトコンストラクタで自分自身のメンバーを使いたい場合、引数リストの閉じかっこと=の間にasを使って書きます。

type SomeClass (x: int) =
  (* 名前はthisでもxでもなんでもいい(ここではself) *)
  new () as self = ...

こちらは実際に使ったことはないかもしれません・・・

Tips

有効な値を持たないクラス定義

Phantom Typeで使うだけの、タグとして型が必要な場合があります。 その場合は値が不要ですので、値を持たない型で十分です。

type Hoge = class end

と定義すると、F#ではデフォルトでnullが無効なため、有効な値がない型が簡単に作れます*5

書けていないトピック

  • 抽象クラスの定義
  • 構造体の定義
  • インターフェイスの定義
  • 列挙型の定義(不要かも)
  • メンバーの定義

いつか書く。

まとめ

オブジェクト指向プログラミング的な機能をあまり使ってこなかったため、今回初めて知ったことがかなりありました。 この記事だけを読むといろいろ面倒に見えますが、実際に書いてみると、よくあるケースを簡潔に書けるようにするためにいろいろと考えられていることがわかりました。 それでも、レコードや判別共用体を使った方が楽な面も多いですから、クラスはF#では基本的には脇役になってしまいますが、知っておくといつか役に立つことがあるかもしれません。 ということで今回はこの辺で。

*1:仕様書の一部分、書いてる人が意義を分かっていなさそうな部分がある・・・

*2:たまに、プライマリコンストラクタを呼び出す必要がある、としている説明を見かけますが、誤りです。ほかの追加オブジェクトコンストラクタでもいいですし、自分自身を呼び出しても構いません

*3:そうしない場合はコンパイルエラー

*4:さらに、mutableも必要になってきます。というか、mutableもつけないと常にゼロ値を表すフィールドになってしまって、意味がないので禁止されているのだと思います。エラーメッセージだけからはわかりにくいですが・・・

*5:Unchecked.defaultofは考えないものとします